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A two-dimensional computer simulation model was proposed for tank-treading and tumbling motions of an
elastic biconcave red blood cell �RBC� under steady shear flow. The RBC model consisted of an outer cellular
membrane and an inner fluid; the membrane’s elastic properties were modeled by springs for stretch/
compression and bending to consider the membrane’s natural state in a practical manner. Membrane deforma-
tion was coupled with incompressible viscous flow of the inner and outer fluids of the RBC using a particle
method. The proposed simulation model was capable of reproducing tank-treading and tumbling motions of an
RBC along with rotational oscillation, which is the transition between the two motions. In simulations using
the same initial RBC shape with different natural states of the RBC membrane, only tank-treading motion was
exhibited in the case of a uniform natural state of the membrane, and a nonuniform natural state was necessary
to generate the rotational oscillation and tumbling motion. Simulation results corresponded to published data
from experimental and computational studies. In the range of simulation parameters considered, the relative
membrane elastic force versus fluid viscous force was �1 at the transition when the natural state nonunifor-
mity was taken into account in estimating the membrane elastic force. A combination of natural state nonuni-
formity and elastic spring constant determined that change in the RBC deformation at the transition is that from
a large compressive deformation to no deformation, such as rigid body.
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I. INTRODUCTION

The motion of a red blood cell �RBC� under blood flow
plays an important role in the rheological properties of blood
and has received particular attention for many years. With
experimental measurements of mechanical behaviors of
RBCs �1,2�, computational modeling and simulations are in-
dispensable for quantitative identification of RBC mechanics
under blood flow and in establishing the multiscale mechan-
ics of blood flow from microscopic blood cells to macro-
scopic rheologies in a blood vessel network �1,3–5�.

Recent advances in computer simulation models enable us
to consider the details of elastic deformation of a liquid cap-
sule enclosed by an elastic membrane, including an RBC,
during capsule motion �6–20�, while analytical models have
been created for a prescribed capsule shape in a certain flow
field �21�. Continuum models, in most of which a single
RBC is divided into an outer elastic membrane and an inner
viscous fluid, successfully express RBC motion under shear
flow observed in in vitro experiments �22–24�. The motion is
characterized by the so-called tank-treading motion, defined
as steady membrane rotation with constant shape and incli-
nation angle, and tumbling motion, defined as overall rota-
tion of an RBC. The transition between these two types of
motion is observed as a rotational oscillation of the entire
RBC accompanied by tank-treading motion �25,26�.

It has been indicated that the motion of RBCs depends on
the shear rate, the viscosity ratio between the inner and outer
fluids of RBCs, the material properties of the elastic mem-
brane and other physical constants �6,8,9,11–13,16–19,21�.

This dependence is based on the fact that physical param-
eters determine the mechanical state of RBCs. In this sense,
a natural state of the RBC membrane, which is defined as a
reference configuration of the membrane at the zero-stress
state, plays a key role in the mechanical state of RBCs. This
is closely related to reports that motion of the liquid capsule
enclosed by the elastic membrane is greatly affected by the
resting capsule shape, which is defined as the capsule shape
in the zero-stress state �6,11,12,16–18,27�. The effects of the
resting shape, however, include mixed effects of the natural
state of the membrane and the capsule shape, such as those
represented by the surface-to-volume ratio, and thus, the role
of the membrane’s natural state in the motion of an RBC has
not been identified yet.

The membrane structure of a normal biconcave RBC can
be statically indeterminate because of membrane elastic
forces and transmural pressure �27�. According to experi-
mental observation of a shape memory phenomenon in a
human RBC �28�, the elastic energy of the RBC membrane
reaches a minimum at a certain membrane position. This
experimental evidence suggests that the natural state of the
RBC membrane is similar to the configuration of a biconcave
discoid shape. To gain quantitative understanding of the re-
lationships between the membrane’s natural state and RBC
motion, it is useful to construct a computational model for
examining the various conditions of the natural state of the
membrane, as has been done to investigate the effects of
prestress of the elastic membrane on capsule deformation in
a flow field �9,14,15�.

In this study, we propose a two-dimensional computer
simulation model of an RBC’s motion to examine the effects
of the natural state of an elastic RBC membrane on tank-
treading and tumbling motions under steady shear flow. A*FAX: �81�43�290-3229; tsubota@faculty.chiba-u.jp

PHYSICAL REVIEW E 81, 011910 �2010�

1539-3755/2010/81�1�/011910�10� ©2010 The American Physical Society011910-1

http://dx.doi.org/10.1103/PhysRevE.81.011910


spring model is used for the elastic membrane to consider the
distribution of the membrane’s natural state in a practical
manner, and a particle method is used to perform a coupled
analysis of membrane elastic deformation and incompress-
ible viscous flow of the RBC’s inner and outer fluids. The
RBC shape is initially set to biconcave with a transmural
pressure, and different natural states of the membrane with
the same initial shape are examined in numerical simulations
of RBC motion.

II. METHODS

A. Two-dimensional particle model of blood

A two-dimensional problem with unit thickness h is as-
sumed for blood flow, and an RBC and blood plasma are
considered blood components, as shown in Fig. 1�a�. The
RBC is further divided into an outer cellular membrane and
an inner fluid. An incompressible viscous flow is assumed
for the blood plasma and RBC inner fluid, and an elastic
deformation for the RBC membrane. All blood components
are discretized by an assembly of computed particles depend-
ing on the type of component �10,29�, in which each particle
i has physical quantities such as position ri, velocity ui and
pressure pi. Particles assigned to the RBC membrane, called
membrane particles, have the averaged properties of the
membrane and its neighboring fluid �blood plasma and RBC
inner fluid� under a nonslip condition between them.

RBC membrane particles are connected with neighboring
membrane particles by stretch/compression and bending
springs to express the membrane’s elastic properties in its
natural state, as shown in Fig. 1�b� �29,30�. The elastic en-
ergy per unit thickness h stored in the stretch/compression
springs due to the change in length l from its reference l0 is
expressed as

EL =
kL

2 �
I=1

N � lI − l0

l0
�2

, �1�

where lI denotes the length of stretch/compression spring el-
ement I, N is the total number of spring elements and kL is
the spring constant. The elastic energy stored in the bending
springs is expressed as

EB =
kB

2 �
I=1

N

tan2��I − �I
0

2
� , �2�

where �I denotes the angle of bending spring element I, �I
0 is

the reference angle of the spring I, N is the total number of
spring elements and kB is the spring constant. In Eq. �2�, �I is
defined as the angle between two neighboring stretch/
compression spring elements, and a tangential function is
chosen to avoid folding of the bending springs. Spring con-
stants kL and kB denote the spring energies per unit strain and
angle, respectively. The reference length l0 of the stretch/
compression springs in Eq. �1� and the reference angle �I

0 of
the bending springs in Eq. �2� are parameters representing a
natural state of the elastic membrane. The spring force on
each membrane particle i is calculated as

Fi = −
�W

�ri
, where W = EL + EB, �3�

on the basis of the principle of virtual work. In Eqs. �1� and
�2�, EL and EB represent elastic energies �N·m� per unit
thickness h=1 m, and thus the units of EL, EB, kL, and kB
are Newton �N�.

B. Particle method for coupled analysis
of fluid and membrane

To express an incompressible viscous flow, motions of all
particles are determined by the moving particle semi-implicit
�MPS� method, a particle method based on an equation of
continuity and the Navier-Stokes �NS� equations �31�. For
membrane particle i with unit thickness h, the elastic spring
force in Eq. �3� is substituted into the particle’s NS equation
as the external force term,

Dui

Dt
= −

1

�
	�p
i +

�

�
	�2u
i +

hFi

mi
. �4�

Equation �4� is the equation of motion to be solved for par-
ticle i, and fluid-membrane interaction is analyzed based on
this equation. Here, 	�p
i and 	�2u
i denote the pressure
gradient and velocity Laplacian models, respectively, used in
the MPS method �31�. � and � are the density and viscosity,
respectively. In the third term on the right-hand side, the
representative mass mi of particle i is set to h�d0

2, with d0

kL
kB
θ
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FIG. 1. �Color online� Computer simulation model of RBC mo-
tion under simple shear flow with particle method. �a� RBC and
plasma as blood components, each of which is expressed by an
assembly of computed particles. �b� Spring model of elastic RBC
membrane. Stretch/compression and bending springs connect par-
ticles assigned to the RBC membrane. �c� Simulation model of a
single RBC under shear flow. The model consists of RBC, blood
plasma and rigid walls. �d� Definition of angle �LA for longitudinal
direction of the entire RBC and �Mem for certain material points on
the RBC membrane. Angles �LA and �Mem are used to quantify
tank-treading and tumbling motions of the RBC in simulation
results.
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being the mean distance between two neighboring computed
particles.

C. Two-dimensional model of RBC motion
in steady shear flow

Referring to in vitro experimental studies �23,24�, a two-
dimensional simulation model is created to investigate an
RBC’s motion under a steady shear flow, as shown in Fig.
1�c�. The model consists of a single RBC, blood plasma and
the upper and lower walls. The size of the model is D
=20 �m in wall separation distance and L=20 �m in flow
direction. A biconcave shape of the RBC, 8 �m in longitu-
dinal length and 2.6 �m in the thickness of the concave part,
is determined by numerical simulation of shape change of a
swollen RBC due to decrease in its volume using a spring
network model �29,30�, the details of which are shown in
Appendix A. The area of the biconcave RBC is 70% of that
of a circle 6.0 �m in diameter, which is the shape of the
swollen RBC model, and the membrane perimeter is the
same as that of the circular swollen RBC, taking membrane
incompressibility into account. The biconcave RBC is placed
at the center of the simulation model, as shown in Fig. 1�c�.
As a boundary condition, the upper and lower wall are
moved to the left and right, respectively, at a constant veloc-
ity u0=1.0�10−2 m /s to generate a simple shear flow. A
periodic boundary condition is applied to the left and right
sides of the model. The viscosity �Out and density � of the
blood plasma are 1.0�10−3 Pa·s and 1.0�103 kg /m3,
respectively, which are the same as those of water and close
to actual blood plasma properties. For the RBC inner fluid,
the viscosity �In is set to five times the outer value �Out with
the same density �, and therefore the viscosity ratio of
the inner and outer RBC fluids, ��=�In /�Out, is fixed at 5,
like that of actual RBCs. With these parameters, the shear
rate, �̇=2u0 /D, is 1000, and the Reynolds number,
Re=�u0D /�Out, is 0.2.

In the two-dimensional simulation model, an original
three-dimensional RBC deformation consisting of planar
shear and out-of-plane bending is simplified to bending de-
formation. The ratio of the two spring constants, kL and kB in
Eqs. �1� and �2�, of the RBC membrane are set to be con-
stant, kL:kB=10:1, to impose a constraint condition of a
constant membrane perimeter that represents incompressibil-
ity of the RBC membrane �32�. As another constraint condi-
tion, the area of the inner fluid of the RBC is kept constant to
consider a condition of constant RBC volume. In numerical
simulations of RBC motion with the MPS method �31�, the
number of computed particles of the inner fluid of the RBC
is always constant, ensuring a constant area of the inner fluid
of the RBC.

By preliminary computer simulations, we confirmed that
the relative effect of the fluid viscous force of the blood
plasma on the elastic bending force of the RBC membrane is
a key parameter in determining the RBC’s motion at low-
Reynolds number Re in the range �101 to �10−2. This pa-
rameter is denoted as �OutlRBC

2 RRBC�̇ / �kBl0�, of which the
details are shown in Appendix B, with lRBC=10 �m and
RRBC=2.5 �m being the characteristic length and radius of

curvature of the RBC, respectively. The parameter is similar
to a capillary number, which is defined as viscous force rela-
tive to surface tension. In this study, the parameter
�OutlRBC

2 RRBC�̇ / �kBl0� is called the bending capillary number
CaB, and simulations of RBC motion are parametrically con-
ducted for different CaB values ranging from 5 to 0.05 by
changing kB from 2.0�10−11 to 2.0�10−9 N. This range of
CaB values is equivalent to that of shear rates �̇ from 366 to
3.66 with bending spring constant kB=7.3�10−12 N, corre-
sponding to a bending modulus B=1.8�10−19 N·m �32�.
Details of the relationship between bending spring constant
kB and bending modulus B are shown in Appendix A

The mean distance d0 between computed particles is
0.4 �m, and the number of particles is about 2700. For the
elastic membrane model of the RBC, the reference length l0
in Eq. �1� of all stretch/compression springs is 0.4 �m, the
same as the mean particle distance d0. The reference angle �I

0

of the bending spring in Eq. �2� determines a natural state of
the two-dimensional membrane and is therefore another key
parameter determining the RBC’s motion. Therefore, simu-
lations of RBC motion are conducted for different magni-
tudes and distributions of �I

0. The number of springs N in
Eqs. �1� and �2� is 48 for both stretch/compression and bend-
ing springs.

The same biconcave shape is maintained under no fluid
force for all simulation parameters considered in the next
section. In the biconcave shape, forces due to membrane
stretch/compression and bending springs are balanced by
those due to transmural pressure, and residual forces on the
membrane of the RBC can be changed according to the
simulation parameters, as briefly explained in Appendix A In
the simulation results, RBC motions are characterized as
tank-treading and tumbling motions. To quantify these mo-
tions, the x axis is set in the flow direction with its origin at
the center of gravity of the RBC, and two angles are defined,
as shown in Fig. 1�d�. One is angle �Mem�−0.5�	�Mem

0.5�� between the x axis and the line connecting the
RBC’s center of gravity and a certain material point on the
membrane, as shown by a marker particle in Fig. 1�d�. The
other is angle �LA�−0.5�	�LA
0.5�� between the x axis
and the RBC’s longitudinal axis. When periodic changes in
�Mem and �LA are predicted, the periods TMem and TLA are
determined, respectively, by using the time average, and they
are normalized by multiplying by the shear rate �̇. Time
average of angle �LA is described as �LA. For rotational
oscillation, the time average of the rotation amplitude in
angle is described as �OA.

III. RESULTS

A. RBC motions for uniform natural state
of elastic membrane

The reference bending angles �I
0 in Eq. �2� are set to zero

for all bending springs I of the RBC membrane, and RBC
motion simulations for different bending capillary numbers
CaB from 5 to 0.05 are conducted. This assumes that a flat
membrane shape corresponds to a natural state �zero-stress
state� of the RBC membrane. The simulation results show
tank-treading motion of the RBC membrane with constant
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longitudinal angle �LA=0.11� for all CaB values considered,
as shown in Fig. 2, following clockwise rotation of the entire
RBC in the initial simulation steps. The tank-treading motion
is steady, as illustrated by periodic time-course changes in
angle �Mem. The nondimensional period of tank-treading
�̇TMem is 66 to 68 and is not significantly affected by CaB.
CaB dependence is observed only for RBC deformation, in
that a greater CaB results in a more elongated RBC shape, as
illustrated by the deformed shapes of RBCs at �CaB,�I

0�
= �5,0� and �0.05, 0� in Fig. 2, according to the increase in
fluid viscous force relative to membrane elastic force.

Reference bending angles �I
0 in Eq. �2� are set to a uni-

form �I
0=2� /N=0.04� for all bending springs I, and RBC

motion simulations are conducted for CaB=0.5. This as-
sumes that a circular RBC membrane, which is uniformly
curved, corresponds to a natural state. The simulation result
is the same as that with �I

0=0 in terms of steady tank-
treading motion with period �̇TMem=66 and constant longi-
tudinal angle �LA=0.11�. Further simulations with different
�I

0 values from 0.04� to 0.4� demonstrate that the results are
not affected by �I

0 values as long as the same value is set for
reference angle �I

0 of all bending springs I.

B. RBC motions for nonuniform natural state
of elastic membrane

Reference bending angles �I
0 in Eq. �2� are distributed

along the membrane as −0.01�	�I
0
0.11�, as are those in

the biconcave RBC shape at the initial state of the simulation

�Fig. 1�b��, and RBC motion simulations for different bend-
ing capillary numbers CaB from 5 to 0.05 are conducted.
This assumes that a biconcave membrane shape corresponds
to a natural state �zero-stress state� of the RBC membrane. In
this case, the RBC’s motion depends on CaB, as shown in
Fig. 3. When CaB is greater than 1, a rotational oscillation of
the entire RBC occurs, accompanied by a tank-treading
membrane motion, as illustrated by snapshots of RBC shapes
for CaB=1 and line graphs of angles �LA and �Mem in Fig.
3�a�. The amplitude �OA and period TLA of the RBC oscil-
lation increase with decreasing CaB, as shown in Fig. 4. The
oscillation period TLA is half the tank-treading period TMem,
reflecting �-rotational symmetry of the RBC shape
�11,16,17,26�. Around CaB=1, the RBC’s motion transits
from rotational oscillation with membrane tank treading to a
tumbling motion. In tumbling motion, an RBC is compressed
around −0.3� to −0.5� in the longitudinal direction �LA, as
illustrated by snapshots of RBC shapes from �̇t=28 to 31 in
Fig. 3�b�. The period TMem as a function of CaB takes the
same values as TLA, as shown in Fig. 4. This illustrates that
tank-treading motion does not occur during tumbling motion.
The degree of RBC deformation decreases with decreasing
CaB, according to the decrease in the fluid viscous force
relative to the membrane elastic force.

C. Effects of nonuniformity of natural state

The simulation results of Secs. III A and III B demon-
strated that an RBC’s motion depends on elastic behaviors
according to nonuniform distribution of reference bending
angle �I

0. Here, parameter � is introduced into Eq. �2� to
represent the degree of natural state nonuniformity,

EB =
kB

2 �
I=1

N

tan2��I − ��I
0

2
� �0 
 �� , �5�

and parametric simulations are conducted for different sets of
bending capillary number CaB and natural state nonunifor-
mity value �. In Eq. �5�, �=0 corresponds to a flat mem-
brane in a natural state and �=1 to the biconcave shape
shown in Fig. 1�b�. Moderate and excessive nonuniformity
are denoted as 0	�	1 and �
1, respectively.

According to bending capillary number CaB and natural
state nonuniformity �, tank-treading and tumbling motions
are exhibited, and a transition between the two occurs at a
certain set of CaB and � values. For example, the transition
occurs at �CaB,�I

0�= �5,3.5�, �0.5, 0.5� and �0.05, 0.05�.
This illustrates that the natural state nonuniformity � at
which the transition occurs increases with CaB. Compiling
the results of parametric simulations for seven different CaB
values, the parameter sets of CaB and � at which the transi-
tion occurs are plotted in Fig. 5 by open circles. This figure
provides a phase diagram of an RBC’s motion with respect
to CaB and � and will be explained in terms of an elastic
deformation of the RBC membrane in Sec. III D. RBCs at
the transition are more compressed for a greater CaB value,
as shown in Fig. 5, around −0.3� to −0.5� in the longitudi-
nal direction �LA during tumbling motion. This demonstrates
that a transition can occur with different degrees of RBC
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FIG. 2. �Color online� Simulation results of RBC motions in
case of uniform natural state of the elastic RBC membrane. Line
graphs show changes in angle �LA /� and �Mem /� for different sets
of bending capillary number CaB and uniform reference angle �I

0,
�CaB,�I

0�= �5,0�, �0.05, 0� and �0.5,2� /N�, as a function of nor-
malized time �̇t. RBC shapes during tank-treading motions are il-
lustrated for these parameter sets in the line graphs.
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deformation according to the combination of bending capil-
lary number CaB and nonuniformity � of the membrane’s
natural state.

D. Elastic resistance force in RBC motion

The RBC motion simulations described in Sec. III C dem-
onstrate that membrane residual forces at the same initial
biconcave shape are affected by the natural state of the elas-
tic membrane, leading to different RBC motions regulated by
the elastic deformation of the membrane. In this section, the
results of Sec. III C and Fig. 5 for the transition behavior
between tank-treading and tumbling motions are explained in

terms of the ratio of membrane elastic force to fluid viscous
force �11�. Here, we assume steady tank-treading membrane
motion along the given biconcave shape of Fig. 1�b�; the
elastic resistance force against the tank-treading motion per
unit thickness is estimated from the additional elastic force
generated because of the motion,

FMem =
DW

DL
, �6�

where W is the elastic energy of the RBC membrane, as
described in Eq. �3�. The L �0
L	LP� coordinate along the
membrane for the total peripheral length LP and the nondi-
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FIG. 3. �Color online� Simulation results of RBC motions in case of nonuniform natural state of the elastic RBC membrane. The
membrane’s natural state is assumed to be the biconcave shape shown in Fig. 1�b�. �a� Rotational oscillation of the entire RBC with
tank-treading motion exhibited for CaB�1. Line graphs show changes in angle �LA /� and �Mem /� for CaB=5, 1.7 and 1 as a function of
normalized time �̇t. The time-course of RBC shape changes is illustrated for CaB=1, in which the marker shows a certain material point on
the membrane. �b� Tumbling motion of the entire RBC exhibited for CaB	1. Line graphs show changes in angle �LA /� and �Mem /� for
CaB=0.95, 0.5 and 0.05 as a function of normalized time �̇t. The time course of RBC shape changes is illustrated for CaB=0.95, in which
the marker shows a certain material point on the membrane.
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mensional coordinate L�=L /LP are defined as shown in Fig.
6. The sign of FMem denotes the resistance force against tank-
treading motion �FMem
0� and the driving force �FMem
	0�. Since the stretch/compression springs have constant
length, and the major deformation in this simulation is bend-
ing, only the bending energy EB of elastic energy W contrib-
utes to elastic force FMem in Eq. �6�. The total fluid viscous

force on the RBC that drives tank-treading motion is roughly
estimated as a constant value,

FFld = �Out�̇lRBC. �7�

The membrane elastic force relative to the fluid viscous
force, F�=FMem /FFld, during tank-treading motion is illus-
trated in Fig. 6 as a function of nondimensional coordinate
L� for the parameter sets �CaB,��= �5,3.5� and �0.05, 0.05�,
at both of which the transition occurs in the simulations of
Sec. III C. In the given tank-treading motion, an elastic re-
sistance force is generated in accordance with elastic defor-
mation of the membrane with nonuniform reference angles
�I

0 of the bending springs. To maintain the tank-treading mo-
tion, the maximum value, F

Max
* , of relative elastic force F�

during the tank-treading pathway L� should be less than a
certain threshold value, which is roughly estimated to be on
the order of unity. In the simulation results of Sec. III C, a
transition between tank-treading and tumbling motions actu-
ally occurs at parameter sets CaB and � that correspond to
F

Max
* values of from 1.17 to 1.33. Comparison of the curves

corresponding to F
Max
* =1.17 and 1.33 with simulation plots

confirms that the transition simulated in Sec. III C can be
explained by F

Max
* values, and that elastic behaviors influ-

enced by the membrane’s natural states play a key role in
determining RBC motions. From the viewpoint of membrane
elastic deformation, this graph also provides a good explana-
tion for the recent numerical result that the motions of cap-
sules with resting biconcave or elliptical shapes, which have
a nonuniform natural state of the membrane, change from
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represent tank-treading and tumbling motions in case of a nonuni-
form natural state as a function of the logarithm of bending capil-
lary number CaB. Black lines show normalized periods �̇TLA on
angle �LA and �̇TMem on angle �Mem for a rotation �2��. Red �gray�
inset in lower right shows angles for rotation amplitude �OA /� and
mean inclination angle �LA /� of the entire RBC.
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lines from simple estimation of elastic force relative to the fluid
force FMax

� =1.17 and 1.33, respectively. The force FMax
� is estimated

under the assumption of steady tank-treading motion; a detailed
explanation of FMax

� is found in Sec. III D. The CaB and � depen-
dency of RBC deformation at the transition is also illustrated.

F
*
=
F M

em
/F
Fl
d

−1

0

1

0.50 1

CaB = 5
α = 3.5
CaB = 0.05
α = 0.05

L
(0<L<LP)

F* =F* = 1.33

L* = L/LP

Max

F* =F* = 1.17Max

FIG. 6. Elastic resistance force, FMem, relative to fluid viscous
force, FFld, estimated for a given membrane tank-treading motion
for a prescribed biconcave shape under shear flow as a function of
normalized peripheral length L�=L /LP. Coordinate L is taken along
the membrane periphery, and LP is the total length of this periphery.
The membrane configuration at the natural state completely
matches the biconcave shape at L�=0 �original position�, 0.5 �half
rotation� and 1 �full rotation�. Solid and dotted lines show
FMem /FFld for �CaB,��= �5,3.5� and �0.05, 0.05�, respectively. FMax

�

is defined as the maximum value of FMem /FFld during tank-treading
motion, and is used in Fig. 5 to explain the simulation results of
Sec. III C.
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tank-treading to tumbling motions when the bending stiff-
ness of the membrane increases �16�. The F

Max
* value at the

transition tends to decrease with bending capillary number
CaB, as shown in Fig. 5, and this result may suggest that
large RBC deformation influencing outer fluid flow aids the
transition from tank-treading to tumbling.

IV. DISCUSSION

A two-dimensional computer simulation model was pro-
posed for tank-treading and tumbling motions of an RBC,
taking the natural state of the elastic membrane into account.
The results demonstrate that nonuniformity of the natural
state of the elastic membrane plays an important role in an
RBC’s motion and deformation. Elastic properties have been
regarded as an important factor in the deformation character-
istics of RBCs, such as deformation into parachute and slip-
per shapes in a tube flow �22,33,34� and elliptical elongation
in a steady shear flow �23,24�. The current study illustrates
that elastic deformation plays an important role in overall
RBC motions characterized as tank-treading and tumbling
motions, in which the natural state of the elastic membrane is
an essential consideration. Technically, the proposed simula-
tion method provides a practical way to adjust the natural
state of the elastic membrane, which is not easy in the shell
model established using the finite element method �8,27�.

Simulation results demonstrate that a transition can occur
at different bending capillary numbers CaB with a certain
natural state nonuniformity �, and that the degree of com-
pressive deformation of the RBC increases with CaB, as
shown in Fig. 5. Therefore, the natural state and elastic con-
stants of an RBC membrane have different roles in determin-
ing RBC deformation and motion. The results show good
agreement with previously published experimental and com-
putational studies in terms of compressive RBC deformation
during tumbling motion �6,8,16�, the tank-treading-to-
tumbling transition according to the fluid viscous force rela-
tive to the membrane elastic force �11,13,16–18,26�, increase
in amplitude �OA and period TLA with decreasing CaB during
overall RBC oscillation �11,13,16–18,26�, and oscillation pe-
riods TOA corresponding to half the values of the tank-
treading period TMem �11,16�. Intermittent behavior of RBC
motions, in which the two modes occur alternately, is pre-
dicted by a reduced model �11�. However, these motions are
not obtained in the present study, which is consistent with
the results obtained by a direct numerical simulation of an
elastic capsule �18�. This evidence indicates that the tank-
treading and tumbling motions are so sensitive to the mem-
brane elastic behavior that under the strong influence of this
behavior, the intermittency can be exhibited only in very
narrow ranges of parameter space.

Simulation results of RBC motions in Sec. III are not
significantly affected by viscous properties, as shown in Ap-
pendix C. The results shown in Fig. 4 do not change in the
range of Reynolds number Re=�u0D /�Out of �10−2 to
�101. The viscosity ratio, ��=�In /�Out, of the inner and
outer fluids of the RBC determines the characteristic periods
of RBC motions, but does not affect their qualitative aspects.
From a numerical view point, we note that the results shown

in Sec. III have been converged with respect to the number
of computed particles, as shown in Appendix D.

An RBC’s deformation at the transition when natural state
nonuniformity �=1 is relatively small compared to three-
dimensional simulation results �8�. This discrepancy is due to
the two-dimensional modeling, in which planar shear defor-
mation is not expressed, and the two-dimensional RBC in
this study may be relatively stiff compared to a three-
dimensional RBC. In the current two-dimensional model,
RBC deformation is simplified to bending deformation, and
it is impossible to put both membrane incompressibility and
shear deformability on the two-dimensional membrane. Our
two-dimensional model represents averaged properties of a
three-dimensional RBC in the thickness direction, and thus,
the simulation results indicate that the average of physical
parameters in the thickness direction plays a key role in RBC
motions regulated by elastic deformations. In this respect,
the constraints of constant inner area and perimeter length in
the present two-dimensional RBC model represent constraint
characteristics averaged over the RBC volume, whereas a
cross-section of the RBC, as well as its corresponding perim-
eter, in three dimensions can change during tank-treading
and tumbling motions. On the other hand, fully three-
dimensional modeling and simulation �35� are underway to
quantify the membrane elastic constants and natural state
separately by comparing simulation results to experimental
observation �28�. Comparison of the present two-
dimensional results and future three-dimensional ones will
lead to understanding of the role of elastic deformation of an
RBC in its tank-treading and tumbling motions. In addition,
this point will lead to insight into a statically indeterminate
membrane structure due to structural reorganization of mol-
ecules in the phospholipid bilayer and cytoskeleton
�27,36–38�. Thus, it is also a necessary future work to mea-
sure the residual strain of cellular membranes directly, as has
been done for other living tissues �39–42�.

A blood flow field with multiple blood cells is affected
by the motions of a single RBC simulated in this study.
The proposed simulation model is applicable to blood flow
with multiple RBCs �10� and provides a practical way to
examine various conditions for hematocrit, flow velocity and
vessel geometry with different diameters and branches
�12,19,20,43–46�. According to the simulation results ob-
tained in this study, the natural state of an RBC membrane
would be an essential consideration in understanding multi-
scale mechanics of blood flow in a microvessel network sys-
tem.
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APPENDIX A: SHAPE CHANGE SIMULATION OF RBC

Simulation of shape change in a swollen RBC due to a
decrease in its volume is conducted on the basis of the spring
network model �30�. The swollen RBC model has a circular
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shape with diameter �=6.0 �m. In the shape change simu-
lation, RBC membrane particles are moved so that the total
elastic energy reaches a minimum by solving a set of motion
equations for each particle,

mSr̈i + �Sṙi = Fi, �A1�

by the finite difference method. Here, a dot �·� denotes the
time derivative, and mS and �S are the representative mass
and viscosity of the RBC, respectively. Force Fi due to the
total elastic spring energy is expressed as

Fi = −
��W + �A�

�ri
, �A2�

instead of Eq. �4�, in order to introduce an areal constraint
with penalty function �A:

�A =
kA

2
� s − s0

s0
�2

. �A3�

Here, s and s0 are the RBC’s inner area and its reference
value, respectively, and penalty constant kA represents a
spring constant of areal compressibility. The final RBC shape
in the simulation depends on the magnitude of the volumetric
decrease and the ratio among three spring constants, kL, kB,
and kA. Constants mS and �S determine the process of shape
changes but not the final shape. The biconcave RBC shown
in Fig. 1�b� is the final shape obtained by the simulation in
the case of 70% volumetric decrease from a swollen circular
RBC with a spring constant ratio of kL:kB:kA=10:1 :104. In
the condition of kL�kB, surface tension forces of the stretch/
compression spring at the biconcave shape are much larger
than bending spring forces. When the bending spring force is
numerically decreased by changing spring constant kB or
natural state nonuniformity � in Eq. �5�, changes in the sur-
face tension force due to very small length changes in the
stretch/compression springs compensate for the decreased
bending force, and another equilibrium state of the elastic
membrane is obtained with almost unchanged biconcave
membrane shape. This is why the same initial biconcave
shape is maintained even if the uniform reference angle �I

0 or
natural state nonuniformity � are changed in Sec. III.

The bending spring constant kB in Eq. �2� can be reduced
to bending modulus B by comparing the bending elastic en-
ergy EB in Eq. �2� with the analytically estimated EB� from
bending modulus B and membrane curvature C �30�. For a
swollen circular RBC membrane with diameter �=6.0 �m,
the bending energy EB� per unit thickness is calculated by line
integrals along the membrane peripherals L=�� with the
constant curvature C=1 / �� /2� as

EB� =
1

2
B�

L
C2dL =

1

2
B�

0

�� � 1

�/2�
2

dL =
2B�

�
. �A4�

The reported B value of 1.8�10−19 N·m �32� corresponds
to kB=7.3�10−12 N if reference angle �I

0 is taken as zero in
Eq. �2�.

APPENDIX B: BENDING CAPILLARY NUMBER CaB

In a membrane model with the bending spring of Eq. �2�,
kB� /4, with bending spring constant kB and bending angle �,
where angle � is roughly approximated by 2l0 multiplied by
the membrane curvature 1 /RRBC, approximates the bending
moments B /RRBC of the elastic membrane. Here, l0 is the
reference length of stretch/compression springs in Eq. �1�,
and the order of bending modulus B can be denoted by kBl0.
In this study, the bending elastic force is represented by
kBl0 / �RRBClRBC�, and bending capillary number CaB
=�OutlRBC

2 RRBC�̇ / �kBl0� is defined as the ratio of the repre-
sentative fluid viscous force �Out�̇lRBC to the bending elastic
force kBl0 / �RRBClRBC�. Considering the RBC shape shown in
Fig. 1�b�, RRBC is estimated to be around 1 to 4 �m. The
characteristic lengths lRBC and RRBC of the RBC might be
merged into only one length parameter with a suitable coef-
ficient that represents the RBC’s shape.

APPENDIX C: EFFECTS OF VISCOSITY
ON RBC MOTIONS

With respect to the simulation results shown in Fig. 4, the
effects of viscosity on RBC motions are investigated by nu-
merical simulations, as shown in Fig. 7. Reynolds number,
Re=�u0D /�Out, and viscosity ratio, ��=�In /�Out, between
the inner and outer fluids of the RBC are considered as rep-
resentative parameters of the viscosity.

Simulation results of characteristic periods, TMem and TLA,
and angles, �OA and �LA, of RBC motion as a function of
bending capillary number CaB are illustrated in Fig. 7�a� for
four cases of Re=0.02, 0.2, 2, and 20, of which Re=0.2 is
used in Sec. III. Re is adjusted by changing the wall velocity
u0 in the simulations, and the viscosity ratio �� is fixed at 5,
as in Sec. III. It is possible that Re affects the inertial force of
the entire RBC relative to the viscous one and the flow fields
around the RBC. This might change the transition behaviors
of RBC motion. In the simulations, however, no specific ef-
fect of Re on RBC motion appears in the range of Re con-
sidered in terms of two points. One point is that bending
capillary number CaB is around 1 at the transition of RBC
motions. The other is the pattern of increase and decrease in
characteristic periods, TMem and TLA, and angles, �OA and
�LA, relative to bending capillary number CaB.

Figure 7�b� illustrates simulation results for four cases of
viscosity ratio ��=0.5, 1, 2.5, and 5, of which ��=5 is used
in Sec. III. The viscosity ratio �� is adjusted by changing the
inner viscosity �In in simulations, and the Reynolds number
Re is fixed at 0.2, as in Sec. III. The simulation results dem-
onstrate that a greater viscosity ratio �� results in greater
characteristic periods TMem and TLA. In the range of �� con-
sidered, the magnitudes of these periods are proportional to
�� values when ��
1, and the effects of �� are gradual
when ��	1. Characteristic angles, �OA and �LA, are not
affected by ��. Therefore, viscosity ratio �� affects the char-
acteristic period �or velocity, in other words� of RBC mo-
tions. The results for the four different �� values are the
same in terms of a CaB value around 1 at the RBC motion
transition, and also in terms of the patterns of increase and
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decrease in characteristic periods, TMem and TLA, and angles,
�OA and �LA, of RBC motion relative to bending capillary
number CaB.

APPENDIX D: EFFECTS OF NUMBER OF COMPUTED
PARTICLES ON RBC MOTIONS

The characteristic periods, TMem and TLA, and angles, �OA
and �LA, of RBC motion as a function of bending capillary
number CaB are illustrated in Fig. 8 for three cases of the
number of computed particles: �1� the same number of com-
puted particles as that used in Sec. III, �2� 1.8 times more
computed particles and �3� 4.0 times more computed par-
ticles. Although some numerical artifacts exist, the results for
the three cases are the same in terms of a CaB value around
1 at the RBC motion transition, and also in terms of the
pattern of increase and decrease in characteristic periods,
TMem and TLA, and angles, �OA and �LA, of RBC motion
relative to bending capillary number CaB. The number of
computed particles used in Sec. III is the smallest among the
three cases, and thus it is confirmed that the results in Sec. III
have converged with respect to the number of computed par-
ticles.
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FIG. 7. �Color online� Effects of viscosity on simulation results
of average periods �̇T and angles � /� of RBC motions. �a� Rey-
nolds number Re=�u0D /�Out of 0.02, 0.2, 2, and 20 and �b� vis-
cosity ratio ��=�In /�Out of 0.5, 1, 2.5, and 5 are examined as
representative parameters of viscosity. Periods �̇T and angles � /�
are plotted as a function of the logarithm of bending capillary num-
ber CaB, as in Fig. 4. Black lines show normalized periods �̇TLA on
angle �LA and �̇TMem on angle �Mem for a rotation �2��. Green
�gray� lines with closed circles in �b� show �̇TLA. Red �gray� inset
in lower right shows angles for rotation amplitude �OA /� and
mean inclination angle �LA /� of the entire RBC. The simulation
results of Re=0.2 in �a� and ��=5 in �b�, indicated by solid lines,
are the same as those used in Sec. III B, and thus, these solid lines
illustrate the same results as those illustrated in Fig. 4.
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FIG. 8. �Color online� Effects of number of computed particles
on simulation results of average periods �̇T and angles � /� of
RBC motions. Periods �̇T and angles � /�, as a function of the
logarithm of bending capillary number CaB, are plotted for three
cases: the same number of particles as that used in Sec. III B
��1.0�, 1.8 times more particles ��1.8� and 4.0 times more par-
ticles ��4.0�. The solid lines for ��1.0� illustrate the same result as
that illustrated in Fig. 4. Black lines show normalized periods �̇TLA

on angle �LA and TMem on angle �Mem for a rotation �2��. Red
�gray� inset in lower right shows angles for rotation amplitude
�OA /� and mean inclination angle �LA /� of the entire RBC.
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